The comparisons of prognostic indexes using data mining techniques and Cox regression analysis in the breast cancer data

نویسندگان

  • Mevlut Ture
  • Füsun Tokatli
  • Imran Kurt
چکیده

The purpose of this study is to determine new prognostic indexes for the differentiation of subgroups of breast cancer patients with the techniques of decision tree algorithms (C&RT, CHAID, QUEST, ID3, C4.5 and C5.0) and Cox regression analysis for disease-free survival (DFS) in breast cancer patients. A retrospective analysis was performed in 381 breast cancer patients diagnosed. Age, menopausal status, age of menarche, family history of cancer, histologic tumor type, quadrant of tumor, tumor size, estrogen and progesterone receptor status, histologic and nuclear grading, axillary nodal status, pericapsular involvement of lymph nodes, lymphovascular and perineural invasion, adjuvant radiotherapy, chemotherapy and hormonal therapy were assessed. Based on these prognostic factors, new prognostic indexes for C&RT, CHAID, QUEST, ID3, C4.5 and C5.0 and Cox regression were obtained. Prognostic indexes showed a good degree of classification, which demonstrates that an improvement seems possible using standard risk factors. We obtained that C4.5 has a better performance than C&RT, CHAID, QUEST, ID3, C5.0 and Cox regression to determine risk groups using Random Survival Forests (RSF). 2008 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از مدل چندجمله‌ای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده

Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...

متن کامل

Using data mining techniques for predicting the survival rate of breast cancer patients: a review article

    This review was conducted between December 2018 and March 2019 at Isfahan University of Medical Sciences. A review of various studies revealed what data mining techniques to predict the probability of survival, what risk factors for these predictions, what criteria for evaluating data mining techniques, and finally what data sources for it have been used to predict the surv...

متن کامل

Identification of Prognostic Genes in Her2-enriched Breast Cancer by Gene Co-Expression Net-work Analysis

Introduction: HER2-enriched subtype of breast cancer has a worse prognosis than luminal subtypes. Recently, the discovery of targeted therapies in other groups of breast cancer has increased patient survival. The aim of this study was to identify genes that affect the overall survival of this group of patients based on a systems biology approach. Methods: Gene expression data and clinical infor...

متن کامل

Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques

Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...

متن کامل

تحلیل بقای بیماران سرطان کولورکتال و عوامل پیش‌آگهی دهنده با استفاده از مدل رگرسیون کاکس

 Background: Colorectal cancer is the third current cancer in the world and the forth cause of death in cancers. Certain factors such as environmental, genetic and life style are related with this cancer. The objective of this study is to find the survival of Iranian patients with colorectal cancer and also to find its prognostic factors. Methods: In this survival study, the data was co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2009